Effects of Internal Surface of Cowl on FlowCharacteristics of Inward Turning Inlet
Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
ZHU Ting1,WANG Wei-xing1,ZHANG Ren-tao1,LI You-chen1. Effects of Internal Surface of Cowl on FlowCharacteristics of Inward Turning Inlet[J]. Journal of Propulsion Technology, 2019, 40(10): 2226-2234.
[1] Malomolina F J, Gaitonde D V, Kutschenreuter P H. Numerical Investigation of an Innovative Inward Turning Inlet[R]. AIAA2005-4871.
[2] Malomolina F J, Ebrahimi H B, Ruffin S . Analysis of an Innovative Inward Turning Inlet Using an Air-JP8 Combustion Mixture at Mach 7[R]. AIAA2006-3041.
[3] Smart M K , Trexler C A . Mach 4 Performance of Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition[J]. Journal of Propulsion and Power, 2004, 20(2):288-293.
[4] Smart M K, White J A. Computational Investigation of the Performance and Back-Pressure Limits of a Hypersonic Inlet[R]. AIAA2002-0508.
[5] Smart M K. Experimental Testing of a Hypersonic Inlet with Rectangular-to-Elliptical Shape Transition[J]. Journal of Propulsion and Power, 2001, 17(2):276-283.
[6] Smart M K . Design of Three-Dimensional Hypersonic Inlets with Rectangular-to-Elliptical Shape Transition[J]. Journal of Propulsion and Power, 1999, 15(3):408-416.
[7] You Y C, Liang D W, Huang G P. Cross Section Controllable Hypersonic Inlet Design Using Streamline-Tracing and Osculating Axisymmetric Concepts[R]. AIAA2007-5379.
[8] You Y C , Liang DW, Guo R. Numerical Research of Three-Dimensional Sections Controllable Internal Waverider Hypersonic Inlet[R]. AIAA2008-4708.
[9] You Yancheng, Liang Dewang, Guo Rongwei. High Enthalpy Wind Tunnel Tests of Three-Dimensional Section Controllable Internal Waverider Hypersonic Inlet[R]. AIAA2009-31.
[10] 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学:技术科学, 2009, (8):1483-1494.
[11] Xiao Yabin, Yue Lianjie, Chen Lihong, et al. Iso-Contraction-Ratio Methodology for the Design of Hypersonic Inward Turning Inlets with Shape Transition[R]. AIAA2012-5978.
[12] 南向军. 压升规律可控的高超声速内收缩进气道设计方法研究[D]. 南京:南京航空航天大学, 2012.
[13] 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491.
[14] Jacobsen L S, Tam C J, Behdadnia R, et al. Starting and Operation of a Streamline-Traced Busemann Inlet at Mach 4[R]. AIAA2006-4508.
[15] Flock A K, Guelhan A. Experimental Investigation of the Starting Behavior of a Three-Dimensional Scramjet Intake with a Movable Cowl and Exchangeable Cowl Geometry at Different Mach Numbers[R]. AIAA2014-2934.
[16] 王卫星, 郭荣伟. 圆形出口内转式进气道流动特征[J]. 航空学报, 2015, 37(2).
[17] 王卫星, 顾 强, 郭荣伟. 内转式进气道流动控制研究[J]. 推进技术, 2017, 38(5): 6-12. (WANG Wei-xing, GU Qiang, GUO Rong-wei. The Study of Flow Control Inward Turning Inlet Probe[J]. Journal of Propulsion Technology, 2017, 38(5): 6-12.)
[18] Drayna T , Nompelis I , Candler G . Hypersonic Inward Turning Inlets: Design and Optimization[R]. AIAA2006-297.
[19] Dolling D S , Mcclure W B . Flowfield Scaling in Sharp Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction[J]. AIAA Journal, 1985, 23(2): 201-206.